## MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

There will be eight problems on the final. The following are sample problems.
Problem 1. Let $\mathcal{F}$ be the vector space of all real valued functions on the real line (i.e. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$ ). Determine whether the following are subspaces of $\mathcal{F}$. Prove your answer.
(1) $\{f \in \mathcal{F} \mid f(x)=-f(-x)$ for all $x\}$.
(2) $\{f \in \mathcal{F} \mid f(0)=1\}$.
(3) $\{f \in \mathcal{F} \mid f(1)=0\}$.

Solution 1. (1) $W=\{f \in \mathcal{F} \mid f(x)=-f(-x)$ for all $x\}$ is a subspace since the following hold:

- for all $x, \overrightarrow{0}(x)=0=-\overrightarrow{0}(-x)$, so $\overrightarrow{0} \in W$,
- if $f, g \in W$, then for all $x,(f+g)(x)=f(x)+g(x)=$ $-f(-x)-g(-x)=-(f+g)(-x)$, so $f+g \in W$,
- if $f \in W$ and $c$ is a scalar, then for all $x,(c f)(x)=c f(x)=$ $c(-f(-x))=-c f(-x)=-(c f)(-x)$, so $c f \in W$.
(2) $\{f \in \mathcal{F} \mid f(0)=1\}$ is not a subspace since $\overrightarrow{0}$ is not in it.
(3) $S=\{f \in \mathcal{F} \mid f(1)=0\}$ is a subspace since the following hold:
- $\overrightarrow{0}(1)=0$, so $\overrightarrow{0} \in S$,
- if $f, g \in S$, then $(f+g)(1)=f(1)+g(1)=0+0=0$, so $f+g \in S$,
- if $f \in S$ and $c$ is a scalar, $(c f)(1)=c f(1)=c 0=0$, so $c f \in S$.
Problem 2. Suppose that $T: V \rightarrow V$. Recall that a subspace $W$ is $T$-invariant if for all $x \in W$, we have that $T(x) \in W$.
(1) Prove that $\operatorname{ran}(T), \operatorname{ker}(T)$ are both $T$-invariant.
(2) Suppose that $W$ is a $T$-invariant subspace and $V=\operatorname{ran}(T) \oplus W$. Show that $W \subset \operatorname{ker}(T)$.
Solution 2. For part (1), for any $x \in \operatorname{ran}(T)$, we have that $T(x) \in$ $\operatorname{ran}(T)$, so the range is invariant. Also, if $x \in \operatorname{ker}(T)$, then $T(x)=0 \in$ $\operatorname{ker}(T)$, so the kernel is invariant.

For part (2), suppose that $x \in W$. Then $T(x) \in W$, since $W$ is invariant. But also $T(x) \in \operatorname{ran}(T)$. Since $V=\operatorname{ran}(T) \oplus W$, we have that $\operatorname{ran}(T) \cap W=\{0\}$. And since $T(x)$ is in that intersection, we have that $T(x)=0$, so $x \in \operatorname{ker}(T)$. It follows that $W \subset \operatorname{ker}(T)$.

Problem 3. Suppose that $T: V \rightarrow W$ is a linear transformation and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $V$. Prove that $T$ is an isomorphism if and only if $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $W$.

Solution 3. For the first direction, suppose that $T$ is an isomorphism. We have to show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $W$. First we will show that the vectors are linearly independent. Suppose that for some scalars $a_{1}, \ldots, a_{n}$, we have

$$
\begin{gathered}
a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=0 \\
\quad \Rightarrow T\left(a_{1} v_{1}+\ldots a_{n} v_{n}\right)=0 \\
\Rightarrow a_{1} v_{1}+\ldots+a_{n} v_{n} \in \operatorname{ker}(T) .
\end{gathered}
$$

$T$ is one-to-one, so it has a trivial kernel, so $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$. But $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent since they are a basis for $V$. So, $a_{1}=\ldots=a_{n}=0$. It follows that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ are linearly independent. Now, $T$ is an isomorphism, and so $\operatorname{dim}(V)=\operatorname{dim}(W)=$ $n$. Therefore $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $W$.

For the other direction, suppose that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $W$. We have to show that $T$ is onto and on-to-one. Let $y \in W$, then for some scalars $a_{1}, \ldots, a_{n}$, we have $y=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=$ $T\left(a_{1} v_{1}+\ldots a_{n} v_{n}\right) \in \operatorname{ran}(T)$. Thus $T$ is onto. To show that it is one-toone, suppose that $T(x)=0$, let $c_{1}, \ldots, c_{n}$ be such that $x=c_{1} v_{1}+\ldots+c_{n} v_{n}$ (here we use that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $V$ ). Then $0=T(x)=$ $T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+\ldots+c_{n} T\left(v_{n}\right)$. But $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ are linearly independent, so $c_{1}=\ldots=c_{n}=0$, and so $x=0$. It follows that $T$ is one-to-one.

Problem 4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be $T\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right)=\left\langle x_{1}-x_{2}, x_{2}-\right.$ $\left.x_{3}, x_{3}-x_{1}\right\rangle$. Let $\beta=\{\langle 1,1,1\rangle,\langle 1,1,0\rangle,\langle 1,-1,0\rangle\}$ and let $e$ be the standard basis for $\mathbb{R}^{3}$.
(1) Find $[T]_{e}$.
(2) Find $[T]_{\beta}$
(3) Find an invertible matrix $Q$ such that $[T]_{\beta}=Q^{-1}[T]_{e} Q$.

Solution 4. $T\left(e_{1}\right)=\langle 1,0,-1\rangle, T\left(e_{2}\right)=\langle-1,1,0\rangle, T\left(e_{3}\right)=\langle 0,-1,1\rangle$. So,

$$
[T]_{e}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

For the second part, we have that:

- $T(\langle 1,1,1\rangle)=\langle 0,0,0\rangle$,
- $T(\langle 1,1,0\rangle)=\langle 0,1,-1\rangle=-\langle 1,1,1\rangle+\frac{3}{2}\langle 1,1,0\rangle-\frac{1}{2}\langle 1,-1,0\rangle$,
- $T(\langle 1,-1,0\rangle)=\langle 2,-1,-1\rangle=-\langle 1,1,1\rangle+\frac{3}{2}\langle 1,1,0\rangle+\frac{3}{2}\langle 1,-1,0\rangle$

So,

$$
[T]_{\beta}=\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & \frac{3}{2} & \frac{3}{2} \\
0 & -\frac{1}{2} & \frac{3}{2}
\end{array}\right)
$$

Finally, let

$$
Q=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

Then $Q=[i d]_{\beta}^{e}$ and so $[T]_{\beta}=Q^{-1}[T]_{e} Q$.
Problem 5. Prove the theorem that a linear transformation is one-toone if and only if it has a trivial kernel.

Solution 5. For the left to right (and easier) direction, suppose that $T$ is one-to-one. If $x \in \operatorname{ker}(T)$, then $T(x)=T(0)=0$, so since $T$ is one-to-one, we get $x=0$. I.e. $\operatorname{ker}(T)=\{0\}$.

For the other direction, suppose that $\operatorname{ker}(T)=\{0\}$, and suppose that for some $x, y, T(x)=T(y)$. Then $T(x)-T(y)=T(x-y)=0$, so $x-y \in \operatorname{ker}(T)$. By our assumption, it follows that $x-y=0$, i.e. $x=y$. So, $T$ is one-to-one.

Problem 6. Determine if the following systems of linear equations are consistent
(1)

$$
\begin{align*}
& x+2 y+3 z=1 \\
& x+y-z=0 \\
& x+2 y+z=3 \\
&  \tag{2}\\
& x+2 y-z=1 \\
& 2 x+y+2 z=3 \\
& x-4 y+7 z=4
\end{align*}
$$

Solution 6. We can represent the system in part (1) as $A \vec{v}=\langle 1,0,3\rangle$, where $\vec{v}=\langle x, y, z\rangle$ and

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & -1 \\
1 & 2 & 1
\end{array}\right)
$$

Row reducing $A$, we compute that the rank of $A$ is 3 , and so $L_{A}$ is onto. Then $\langle 1,0,3\rangle$ is in its range, and so the system is consistent.

For the second system, we have $A \vec{v}=\langle 1,3,4\rangle$, where $\vec{v}=\langle x, y, z\rangle$ and

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 2 \\
1 & -4 & 7
\end{array}\right)
$$

Row reducing $A$, we compute that the rank of $A$ is 2 . On the other hand, setting $\vec{b}=\langle 1,3,4\rangle$, we have that the rank of $[A \mid \vec{b}]$ is 3 (again we row reduce to compute that.) So, $\vec{b} \notin \operatorname{ran} L_{A}$. It follows that the system is inconsistent.

Problem 7. Suppose that $A, B$ are two $n \times n$ matrices. Prove that the rank of $A B$ is less than or equal to the rank of $B$.

Solution 7. First we note that by the dimension theorem, for any linear transformation $T: V \rightarrow W$ and subspace $S$ of $V$, we have that $\operatorname{dim}\left(T^{\prime \prime} S\right) \leq \operatorname{dim}(S)$. Here $T^{\prime \prime} S$ denotes the image of $S$ under $T$. Now, we have that $\operatorname{rank}(A B)=\operatorname{rank}\left(L_{A B}\right)=\operatorname{dim}\left(\operatorname{ran} L_{A B}\right)=$ $\operatorname{dim}\left(\operatorname{ran}\left(L_{A} \circ L_{B}\right)\right)=\operatorname{dim}\left(L_{A}^{\prime \prime}\left(\operatorname{ran} L_{B}\right)\right) \leq \operatorname{dim}\left(\operatorname{ran} L_{B}\right)=\operatorname{rank}(B)$.

Problem 8. Suppose $A, B$ are $n \times n$ matrices, such that $B$ is obtained from $A$ by multiplying a row of $A$ by a nonzero scalar $c$. Prove that $\operatorname{det}(B)=c \operatorname{det}(A)$. (You can use the definition of determinant by expansion along any row or column.)

Solution 8. If $n=1$, then $A=(a), B=(c a)$, and so $\operatorname{det}(B)=c a=$ $c \operatorname{det}(A)$. Now, suppose that $n>1$. Let $1 \leq k \leq n$ be such that the $k$-th row of $A$ is multiplied by $c$ to obtain $B$. Denote

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq n}, B=\left(b_{i j}\right)_{1 \leq i, j \leq n} .
$$

Then for all $j, b_{k j}=c a_{k j}$. Also, for $1 \leq i, j \leq n$ let $A_{i j}$ and $B_{i j}$ be the $n-1 \times n-1$ submatrices obtained by removing the $i$-th row and the $j$-th column of $A$ and $B$ respectively. Note that for all $j, A_{k j}=B_{k j}$. Then, expanding along the $k$-th row of $B$, we compute:

$$
\begin{gathered}
\operatorname{det}(B)=\Sigma_{1 \leq j \leq n} b_{k j}(-1)^{j+k} \operatorname{det} B_{k j}=\Sigma_{1 \leq j \leq n} c a_{k j}(-1)^{j+k} \operatorname{det} A_{k j}= \\
=c\left(\Sigma_{1 \leq j \leq n} a_{k j}(-1)^{j+k} \operatorname{det} A_{k j}\right)=c \operatorname{det}(A) .
\end{gathered}
$$

Problem 9. Suppose $M$ is an $n \times n$ matrix that can be written in the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & I
\end{array}\right)
$$

where $A$ is a square matrix. Show that $\operatorname{det}(M)=\operatorname{det}(A)$.

Solution 9 . We prove this by induction on $k$. If $k=1$, then denote

$$
M=\left(\begin{array}{cc}
a & B \\
0 & I
\end{array}\right)
$$

where $a$ is a scalar. So, expanding by the first column, we get $\operatorname{det}(M)=$ $a \operatorname{det}(I)=a=\operatorname{det}(A)$ as desired.

Now, suppose that $k>1$ and the statement is true for $k-1$. Denote $A=\left(a_{i j}\right)_{1 \leq i, j \leq k}$. Also, for $1 \leq i \leq k, M_{i 1}$ is the submatrix of $M$ obtained by removing the $i$-th row and the first column. Then for each $i \leq k, M_{i 1}$ has the form:

$$
\left(\begin{array}{cc}
A_{i 1} & B_{i} \\
0 & I
\end{array}\right)
$$

where $A_{i 1}$ is the submatrix of $A$ obtained by removing the $i$-th row and the first column of $A$, and $B_{i}$ is the submatrix of $B$ obtained by removing the $i$-th row of $B$. By the inductive hypothesis, we have that for each $i \leq k, \operatorname{det}\left(M_{i 1}\right)=\operatorname{det}\left(A_{i 1}\right)$. Expanding by the first column, we get:
$\operatorname{det}(M)=\Sigma_{1 \leq i \leq k} a_{i 1}(-1)^{i+1} \operatorname{det} M_{i 1}=\Sigma_{1 \leq i \leq k} a_{i 1}(-1)^{i+1} \operatorname{det} A_{i 1}=\operatorname{det}(A)$.
Problem 10. A matrix $A$ is called nilpotent if for some positive integer $k, A^{k}=0$. Prove that if $A$ is a nilpotent matrix, then $A$ is not invertible.

Solution 10. Here we will use the theorem that for any two matrices $B, C$, we have that $\operatorname{det}(B C)=\operatorname{det}(B) \operatorname{det}(C)$. Fix $k$ such that $A^{k}=0$. Then $0=\operatorname{det}\left(A^{k}\right)=(\operatorname{det}(A))^{k}$. So, $\operatorname{det}(A)=0$. It follows that $A$ is not invertible.

Problem 11. An $n \times n$ matrix $A$ is called orthogonal if $A A^{t}=I_{n}$. Prove that if $A$ is orthogonal, then $|\operatorname{det} A|=1$.

Solution 11. We will use the theorems that for any two matrices $B, C$, we have that $\operatorname{det}(B C)=\operatorname{det}(B) \operatorname{det}(C)$ and $\operatorname{det}\left(B^{t}\right)=\operatorname{det}(B)$.

Suppose that $A A^{t}=I_{n}$. Then $1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(A A^{t}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{t}\right)=$ $\operatorname{det}(A) \operatorname{det}(A)=(\operatorname{det}(A))^{2}$. So $|\operatorname{det}(A)|=1$.

Problem 12. Let $A$ be an $n \times n$ matrix. Prove that if $A$ is diagonalizable, then so is $A^{t}$.

Solution 12. Since $A$ is diagonalizable, let $C$ be the invertible matrix such that $C^{-1} A C=D$, where $D$ is a diagonal matrix. Then $A=$ $C D C^{-1}$, and so $A^{t}=\left(C D C^{-1}\right)^{t}=\left(C^{-1}\right)^{t} D^{t} C^{t}=\left(C^{t}\right)^{-1} D C^{t}$, and so $C^{t} A^{t}\left(C^{t}\right)^{-1}=D$. I.e. $A^{t}$ is diagonalizable.

Problem 13. Let

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Show that $A$ is diagonalizable over $\mathbb{R}$ and find an invertible matrix $C$ such that $C^{-1} A C=D$ where $D$ is diagonal.

Solution 13. The characteristic polynomial of $A$ is $\lambda(1-\lambda)(2-\lambda)$. Setting this equal to zero, we get $\lambda=0,1,2$. So, we have three eigenvalues. Since $A$ is a $3 \times 3$ matrix and there are 3 eigenvalues, it follows that $A$ must be diagonalizable.

To find the invertible matrix $C$, we have to find a basis of eigenvectors and use them as the column vectors of $C$.

- for $\lambda=0$, we solve $A \mathbf{x}=\mathbf{0} . A\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle x_{1}+3 x_{2}, 2 x_{2}-x_{3}, 0\right\rangle$ and so $0=x_{1}+3 x_{2}=2 x_{2}-x_{3}$. So, $x_{1}=-3 x_{2}$ and $x_{3}=2 x_{2}$, so $\mathbf{x}=c\langle-3,1,2\rangle$.
- for $\lambda=1$, we solve $A \mathbf{x}=\mathbf{x}$. Then $x_{1}=x_{1}+3 x_{2}, x_{2}=2 x_{2}-x_{3}$, $x_{3}=0$. So, $x_{2}=0$ and $\mathbf{x}=c\langle 1,0,0\rangle$.
- for $\lambda=2$, we solve $A \mathbf{x}=2 \mathbf{x}$. Then $2 x_{1}=x_{1}+3 x_{2}, 2 x_{2}=$ $2 x_{2}-x_{3}, 2 x_{3}=0$. So, $x_{1}=3 x_{2}$ and $\mathbf{x}=c\langle 3,1,0\rangle$.
Now let

$$
C=\left(\begin{array}{ccc}
-3 & 1 & 3 \\
1 & 0 & 1 \\
2 & 0 & 0
\end{array}\right)
$$

$C^{-1} A C=D$, where

$$
D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Problem 14. Let $T: V \rightarrow V$ be a linear transformation and let $x \in$ $V$. Let $W$ be the $T$-cyclic subspace of $V$ generated by $x$. I.e. $W=$ $\operatorname{Span}\left(\left\{x, T(x), T^{2}(x), \ldots\right\}\right)$.
(1) Show that $W$ is $T$ - invariant.
(2) Show that $W$ is the smallest $T$-invariant subspace containing $x$ (i.e. show that any $T$-invariant subspace that contains $x$, also contains $W$ ).

Solution 14. For the first part of the problem, suppose that $y \in W$. Then for some scalars, $y=a_{1} x+a_{2} T(x)+\ldots a_{n+1} T^{n}(x)$, and so $T(y)=$ $T\left(a_{1} x+a_{2} T(x)+\ldots a_{n+1} T^{n}(x)\right)=a_{1} T(x)+a_{2} T^{2}(x)+\ldots a_{n+1} T^{n+1}(x) \in$ $W$. Thus $W$ is $T$ - invariant.

For the second part of the problem, suppose that $S$ is a $T$-invariant subspace that contains $x$. First we show the following claim.
Claim 15. For all $k \geq 0, T^{k}(x) \in S$.
Proof. By induction on $k$. If $k=0$, then $T^{k}(x)=x \in S$ by assumption. Now suppose that $T^{k}(x) \in S$. Then $T^{k+1}(x)=T\left(T^{k}(x)\right) \in S$ since $S$ is $T$-invariant.

Now for any $y \in W$, we know that for some scalars, $y=a_{1} x+$ $a_{2} T(x)+\ldots a_{n+1} T^{n}(x)$ and since $S$ is a subspace (i.e. closed under vector addition and scalar multiplication) we get that $y \in S$. So, $W \subset S$.

Problem 15. Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

Use the Cayley-Hamilton theorem to show that $A^{2}-2 A+5 I$ is the zero matrix.

Solution 16. The characteristic polynomial of $A$ is $f(t)=\operatorname{det}(A-$ $\left.t I_{2}\right)=(1-t)^{2}+4=t^{2}-2 t+5$. By the Cayley-Hamilton theorem, $A$ satisfies its own characteristic polynomial. Therefore, $A^{2}-2 A+5 I$ is the zero matrix.

